4.6 Article

Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 12, 页码 7775-7786

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp05857g

关键词

-

资金

  1. European Commission on the 7th Framework Program NMP Project Eco<SUP>2</SUP>CO<INF>2</INF> [309701]
  2. FCH-JU Call Project ARTIPHYCTION [303435]

向作者/读者索取更多资源

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures have been widely used as photo-catalysts due to their low-cost, high surface area, robustness, abundance and non-toxicity. In this work, four TiO2 and ZnO-based nanostructures, i.e. TiO2 nanoparticles (TiO2 NPs), TiO2 nanotubes (TiO2 NTs), ZnO nanowires (ZnO NWs) and ZnO@TiO2 core-shell structures, specifically prepared with a fixed thickness of about 1.5 mm, are compared for the solar-driven water splitting reaction, under AM1.5G simulated sunlight. Complete characterization of these photo-electrodes in their structural and photo-electrochemical properties was carried out. Both TiO2 NPs and NTs showed photo-current saturation reaching 0.02 and 0.12 mA cm(-2), respectively, for potential values of about 0.3 and 0.6 V vs. RHE. In contrast, the ZnO NWs and the ZnO@TiO2 core-shell samples evidence a linear increase of the photocurrent with the applied potential, reaching 0.45 and 0.63 mA cm(-2) at 1.7 V vs. RHE, respectively. However, under concentrated light conditions, the TiO2 NTs demonstrate a higher increase of the performance with respect to the ZnO@TiO2 core-shells. Such material-dependent behaviours are discussed in relation with the different charge transport mechanisms and interfacial reaction kinetics, which were investigated through electrochemical impedance spectroscopy. The role of key parameters such as electronic properties, specific surface area and photo-catalytic activity in the performance of these materials is discussed. Moreover, proper optimization strategies are analysed in view of increasing the efficiency of the best performing TiO2 and ZnO-based nanostructures, toward their practical application in a solar water splitting device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据