4.1 Article

Comparison of Free Radical Generation by Pre- and Post-Sintered Cemented Carbide Particles

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15459620903349073

关键词

dermal exposure; hard metal; inhalation exposure; particle physicochemical properties; reactive oxygen species

向作者/读者索取更多资源

Rapid generation of reactive oxygen species (ROS) may occur in response to cellular contact with metal particles. Generation of ROS by cobalt and/or tungsten carbide is implicated in causing hard metal lung disease (HMD) and allergic contact dermatitis (ACD). In this study, ROS generation and particle properties that influence radical generation were assessed for three sizes of tungsten, tungsten carbide, cobalt, admixture (tungsten carbide and cobalt powders), spray dryer, and post-sintered chamfer grinder powders using chemical (H2O2 plus phosphate buffered saline, artificial lung surfactant, or artificial sweat) and cellular (RAW 264.7 mouse peritoneal monocytes plus artificial lung surfactant) reaction systems. For a given material, on a mass basis, hydroxyl ((OH)-O-center dot) generation generally increased as particle size decreased; however, on a surface area basis, radical generation levels were more, but not completely, similar. Chamfer grinder powder, polycrystalline aggregates of tungsten carbide in a metallic cobalt matrix, generated the highest levels of. OH radicals (p < 0.05). Radical generation was not dependent on the masses of metals, rather, it involved surface-chemistry-mediated reactions that were limited to a biologically active fraction of the total available surface area of each material. Improved understanding of particle surface chemistry elucidated the importance of biologically active surface area in generation of ROS by particle mixtures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据