4.1 Article

N95 and P100 Respirator Filter Efficiency Under High Constant and Cyclic Flow

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15459620802558196

关键词

constant flow; cyclic flow; filter; high volumetric flow; particulate penetration; respirator

资金

  1. Office of Law Enforcement Standards, National Institute of Standards and Technology, Gaithersburg
  2. National Personal Protective Technology Laboratory (NPPTL)
  3. National Institute for Occupational Safety and Health, Pittsburgh

向作者/读者索取更多资源

This study investigated the effect of high flow conditions on aerosol penetration and the relationship between penetration at constant and cyclic flow conditions. National Institute for Occupational Safety and Health (NIOSH)-approved N95 and P100 filtering facepiece respirators and cartridges were challenged with inert solid and oil aerosols. A combination of monodisperse aerosol and size-specific aerosol measurement equipment allowed count-based penetration measurement of particles with nominal diameters ranging from 0.02 to 2.9 mu m. Three constant flow conditions (85, 270, and 360 L/min) were selected to match the minute, inhalation mean, and inhalation peak flows of the four cyclic flow conditions (40, 85, 115, and 135 L/min) tested. As expected, penetration was found to increase under increased constant and cyclic flow conditions. The most penetrating particle size (MPPS) generally ranged from 0.05 to 0.2 mu m for P100 filters and was approximately 0.05 mu m for N95 filters. Although penetration increased at the high flow conditions, the MPPS was relatively unaffected by flow. Of the constant flows tested, the flows equivalent to cyclic inhalation mean and peak flows best approximated the penetration measurements of the corresponding cyclic flows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据