4.6 Article

Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 27, 页码 18035-18044

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp02181b

关键词

-

资金

  1. Office of Naval Research (ONR) [N00014-14-1-0721]
  2. National Science Foundation [TG-DMR130142]

向作者/读者索取更多资源

We perform a first principles computational study of designing the Na0.5Bi0.5TiO3 (NBT) perovskite material to increase its oxygen ionic conductivity. In agreement with the previous experiments, our computation results confirm fast oxygen ionic diffusion and good stability of the NBT material. The oxygen diffusion mechanisms in this new material were systematically investigated, and the effects of local atomistic configurations and dopants on oxygen diffusion were revealed. Novel doping strategies focusing on the Na/Bi sublattice were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm(-1) at 900 K compared to the previous Mg doped compositions. This study demonstrated the advantages of first principles calculations in understanding the fundamental structure-property relationship and in accelerating the materials design of the ionic conductor materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据