4.7 Article

Dietary resveratrol supplementation normalizes gene expression in the hippocampus of streptozotocin-induced diabetic C57Bl/6 mice

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 25, 期 3, 页码 313-318

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2013.11.005

关键词

Hippocampus; Diabetes; Resveratrol; Histone acetylation; Inflammation; Synaptic plasticity

资金

  1. Priority Research Centre for Physical Activity and Nutrition
  2. University of Newcastle, Australia

向作者/读者索取更多资源

Diabetes is associated with cognitive impairment and brain aging, with alterations in hippocampal neurogenesis and synaptic plasticity implicated in these changes. As the prevalence of diabetes continues to rise, readily implemented strategies are increasingly needed in order to protect the brain's cognitive functions. One possibility is resveratrol (RES) (3,5,4- trihydroxystilbene), a polyphenol of the phytoalexin family that has been shown to be protective in a number of neuropathology paradigms. In the present study, we sought to determine whether dietary supplementation with RES has potential for the protection of cognitive functions in diabetes. Diabetes was induced using streptozotocin, and once stable, animals received AIN93G rodent diet supplemented with RES for 6 weeks. Genome-wide expression analysis was conducted on the hippocampus and genes of interest were confirmed by quantitative, real-time polymerase chain reaction. Genome-wide gene expression analysis of the hippocampus revealed that RES supplementation of the diabetic group resulted in 481differentially expressed genes compared to non-supplemented diabetic mice. Intriguingly, gene expression that was previously found significantly altered in the hippocampus of diabetic mice, and that is implicated in neurogenesis and synaptic plasticity (Hdac4, Hat1, Wnt7a, ApoE), was normalized following RES supplementation. In addition, pathway analysis revealed Jak-Stat signaling was the most significantly enriched pathway. The Jak-Stat pathway induces a pro-inflammatory signaling cascade, and we found most genes involved in this cascade (e.g. Il15, Il22, Socs2, Socs5) had significantly lower expression following RES supplementation. These data indicate RES could be neuroprotective and beneficial for the maintenance of cognitive function in diabetes. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据