4.6 Article

Quercetin Ameliorates Cardiovascular, Hepatic, and Metabolic Changes in Diet-Induced Metabolic Syndrome in Rats

期刊

JOURNAL OF NUTRITION
卷 142, 期 6, 页码 1026-1032

出版社

OXFORD UNIV PRESS
DOI: 10.3945/jn.111.157263

关键词

-

资金

  1. Dr. Red Nutraceuticals, Brisbane, Australia
  2. Prince Charles Hospital Foundation, Brisbane, Australia

向作者/读者索取更多资源

Metabolic syndrome is a risk factor for cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). We investigated the responses to the flavonol, quercetin, in male Wistar rats (8-9 wk old) divided into 4 groups. Two groups were given either a corn starch rich (C) or high-carbohydrate, high-fat (H) diet for 16 wk; the remaining 2 groups were given either a C or H diet for 8 wk followed by supplementation with 0.8 g/kg quercetin in the food for the following 8 wk (CO and HQ, respectively). The H diet contained similar to 68% carbohydrates, mainly as fructose and sucrose, and similar to 24% fat from beef tallow; the C diet contained similar to 68% carbohydrates as polysaccharides and similar to 0.7% fat. Compared with the C rats, the H rats had greater body weight and abdominal obesity, dyslipidemia, higher systolic blood pressure, impaired glucose tolerance, cardiovascular remodeling, and NAFLD. The H rats had lower protein expressions of nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and carnitine palmitoyltransferase 1 (CPT1) with greater expression of NF-kappa B in both the heart and the liver and less expression of caspase-3 in the liver than in C rats. HQ rats had higher expression of Nrf2, HO-1, and CPT1 and lower expression of NF-kappa B than H rats in both the heart and the liver. HQ rats had less abdominal fat and lower systolic blood pressure along with attenuation of changes in structure and function of the heart and the liver compared with H rats, although body weight and dyslipidemia did not differ between the H and HQ rats. Thus, quercetin treatment attenuated most of the symptoms of metabolic syndrome, including abdominal obesity, cardiovascular remodeling, and NAFLD, with the most likely mechanisms being decreases in oxidative stress and inflammation. J. Nutr. 142: 1026-1032, 2012.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据