4.6 Article

Effect of shape biaxiality on the phase behavior of colloidal liquid-crystal monolayers

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 9, 页码 6389-6400

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp04812a

关键词

-

资金

  1. MINECO (Spain) [FIS2010-22047-C01, FIS2010-22047-C04]
  2. Hungarian State
  3. European Union [TAMOP-4.2.A-11/1/KONV-2012-0071]

向作者/读者索取更多资源

We extend our previous work on monolayers of uniaxial particles [J. Chem. Phys., 2014, 140, 204906] to study the effect of particle biaxiality on the phase behavior of liquid-crystal monolayers. Particles are modelled as board-like hard bodies with three different edge lengths sigma(1) >= sigma(2) >= sigma(3), and the restricted-orientation approximation (Zwanzig model) is used. A density-functional formalism based on the fundamental-measure theory is used to calculate phase diagrams for a wide range of values with the largest aspect ratio kappa(1) = sigma(1)/sigma(3) is an element of [1,100]. We find that particle biaxiality in general destabilizes the biaxial nematic phase already present in monolayers of uniaxial particles. While plate-like particles exhibit strong biaxial ordering, rod-like ones with kappa(1) > 21.34 exhibit reentrant uniaxial and biaxial phases. As particle geometry is changed from uniaxial- to increasingly biaxial-rod-like, the region of biaxiality is reduced, eventually ending in a critical-end point. For kappa(1) > 60, a density gap opens up in which the biaxial nematic phase is stable for any particle biaxiality. Regions of the phase diagram, where packing-fraction inversion occurs (i.e. packing fraction is a decreasing function of density), are found. Our results are compared with the recent experimental studies on nematic phases of magnetic nanorods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据