4.6 Article

High response and selectivity of a Cu-ZnO nanowire nanogenerator as a self-powered/active H2S sensor

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 3, 页码 2121-2126

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp04983g

关键词

-

资金

  1. National Natural Science Foundation of China [51102041, 11104025]
  2. Fundamental Research Funds for the Central Universities [N120205001, N120405010]
  3. Program for New Century Excellent Talents in University [NCET-13-0112]

向作者/读者索取更多资源

Room-temperature self-powered H2S sensing with high response and selectivity has been realized from a Cu-ZnO nanowire nanogenerator. Upon exposure to 1000 ppm H2S at room temperature, the piezoelectric output voltage of the device (5 at% Cu-ZnO) under compressive force decreases from 0.552 (in dry air) to 0.049 V, and the response is up to 1045, over 8 times larger than that of undoped ZnO nanowires. The selectivity against H2S is also very high at room temperature. The enhanced room-temperature H2S sensing performance can be attributed to the coupling of the piezoelectric screening effect of ZnO nanowires and the synergistic effect of the Cu dopant. This study should stimulate research into designing a new gas sensor for detecting toxic gases at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据