4.7 Article

A Compartmental Model for Biokinetics and Dosimetry of 18F-Choline in Prostate Cancer Patients

期刊

JOURNAL OF NUCLEAR MEDICINE
卷 53, 期 6, 页码 985-993

出版社

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.111.099408

关键词

F-18-choline; PET; prostate carcinoma; biokinetics; dosimetry

资金

  1. European Commission through the EURATOM [FP7-212100]

向作者/读者索取更多资源

PET with F-18-choline (F-18-FCH) is used in the diagnosis of prostate cancer and its recurrences. In this work, biodistribution data from a recent study conducted at Skane University Hospital Malmo were used for the development of a biokinetic and dosimetric model. Methods: The biodistribution of F-18-FCH was followed for 10 patients using PET up to 4 h after administration. Activity concentrations in blood and urine samples were also determined. A compartmental model structure was developed, and values of the model parameters were obtained for each single patient and for a reference patient using a population kinetic approach. Radiation doses to the organs were determined using computational (voxel) phantoms for the determination of the S factors. Results: The model structure consists of a central exchange compartment (blood), 2 compartments each for the liver and kidneys, 1 for spleen, 1 for urinary bladder, and 1 generic compartment accounting for the remaining material. The model can successfully describe the individual patients' data. The parameters showing the greatest interindividual variations are the blood volume (the clearance process is rapid, and early blood data are not available for several patients) and the transfer out from liver (the physical half-life of F-18 is too short to follow this long-term process with the necessary accuracy). The organs receiving the highest doses are the kidneys (reference patient, 0.079 mGy/MBq; individual values, 0.033-0.105 mGy/MBq) and the liver (reference patient, 0.062 mGy/MBq; individual values, 0.036-0.082 mGy/MBq). The dose to the urinary bladder wall of the reference patient varies between 0.017 and 0.030 mGy/MBq, depending on the assumptions on bladder voiding. Conclusion: The model gives a satisfactory description of the biodistribution of F-18-FCH and realistic estimates of the radiation dose received by the patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据