4.7 Article

Quantum Dots for In Vivo Small-Animal Imaging

期刊

JOURNAL OF NUCLEAR MEDICINE
卷 50, 期 4, 页码 493-496

出版社

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.108.053561

关键词

quantum dots; molecular imaging; optical imaging; PET; nanoparticles; near-infrared fluorescence (NIRF) imaging; nanotechnology; cancer; nanomedicine

资金

  1. National Institutes of Health [EB000312-06A2]
  2. Human Frontier Science Program

向作者/读者索取更多资源

Nanotechnology is poised to transform research, prevention, and treatment of cancer through the development of novel diagnostic imaging methods and targeted therapies. In particular, the use of nanoparticles for imaging has gained considerable momentum in recent years. This review focuses on the growing contribution of quantum dots (QDs) for in vivo imaging in small-animal models. Fluorescent QDs, which are small nanocrystals (1-10 nm) made of inorganic semiconductor materials, possess several unique optical properties best suited for in vivo imaging. Because of quantum confinement effects, the emission color of QDs can be precisely tuned by size from the ultraviolet to the near-infrared. QDs are extremely bright and photostable. They are also characterized by a wide absorption band and a narrow emission band, which makes them ideal for multiplexing. Finally, the large surface area of QDs permits the assembly of various contrast agents to design multimodality imaging probes. To date, biocompatible QD conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Here we consider these novel breakthroughs in light of their potential clinical applications and discuss how QDs might offer a suitable platform to unite disparate imaging modalities and provide information along a continuum of length scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据