4.6 Article

What is the primary mover of water dynamics?

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 23, 页码 15428-15434

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp01871d

关键词

-

资金

  1. Matsumae International Foundation
  2. Grants-in-Aid for Scientific Research [13F03356] Funding Source: KAKEN

向作者/读者索取更多资源

Even today, the H-bonded cluster structure of water still stands as a major point of debate in the science of liquids. Much of this discussion is devoted to understand its dynamic nature. This has a direct impact on deciphering the many anomalies of water such as its exceptional heat capacity. Of these properties, dielectric permittivity and relaxation are of particular interest. The argument rages over whether the almost Debye-like character of the dispersion is the result of the reorientation of an apparent dipole moment of the water cluster or simply the cumulative effect of single water molecule reorientation. Furthermore, like many glass formers, it has a high frequency excess wing that does not fit into the accepted models of a single relaxation time of the main peak. Herein, we present evidence that the microscopic origins of both the excess wing and the main relaxation process of pure water are the same. The origin of these two features is explored and we suggest a new paradigm for water relaxation based on the concept of a proton cascade leading to a cluster reorientation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据