4.4 Article

Direct simulations of spherical particles sedimenting in viscoelastic fluids

期刊

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS
卷 183, 期 -, 页码 1-13

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnnfm.2012.07.006

关键词

Viscoelastic fluid; Lattice-Boltzmann; Finite volume; Immersed boundary method; Hindered settling; FENE-CR

向作者/读者索取更多资源

A direct simulation methodology for solid spheres moving through viscoelastic (FENE-CR) fluids has been developed. It is based on a lattice-Boltzmann scheme coupled with a finite volume solver for the transport equation of the conformation tensor, which directly relates to the elastic stress tensor. An immersed boundary method imposes no-slip conditions on the spheres moving over the fixed grid. The proposed method has been verified by comparison with computational data from the literature on the viscoelastic flow past a stationary cylinder. Elastic effects manifest themselves in terms of drag reduction and for-aft asymmetry around the cylinder. Single sphere sedimentation in viscoelastic fluids shows velocity over-shoots and subsequent damping before a steady settling state is reached. In multi-sphere simulations, the interaction between spheres depends strongly on the (elastic) properties of the liquid. Simulations of sedimentation of multiple spheres illustrate the potential of the method for application in dense solid-liquid suspensions. The sedimentation simulations have Reynolds numbers of order 0.1 and Deborah numbers ranging from 0 to 1.0. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据