4.4 Article

Slip effects in HDPE flows

期刊

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS
卷 167, 期 -, 页码 18-29

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnnfm.2011.09.007

关键词

Non-isothermal die flow; HDPE melt; K-BKZ constitutive equation; Viscoelasticity; Slip effects; Entrance pressure drop

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada
  2. NTUA

向作者/读者索取更多资源

The capillary flow of a high-density polyethylene (HDPE) melt was studied both experimentally and numerically. The excess pressure drop due to entry (entrance pressure drop), the compressibility, the effect of pressure and temperature on viscosity, and the slip effects on the capillary data analysis have been examined. Using a series of capillary dies having different diameters, D, and length-to-diameter LID ratios, a full theological characterization has been carried out, and the experimental data have been fitted both with a viscous model (Cross) and a viscoelastic one (the Kaye-Bernstein, Kearsley, Zapas/Papanastasiou, Scriven, Macosko or K-BKZ/PSM model). Particular emphasis has been placed on the effects of wall slip (significant for HDPE). For the viscous model, the viscosity is a function of both temperature and pressure. For the viscoelastic K-BKZ model, the time-temperature shifting concept has been used for the non-isothermal calculations, while the time-pressure shifting concept has been used to shift the relaxation moduli for the pressure-dependence effect. It was found that only the viscoelastic simulations were capable of reproducing the experimental data well. On the other hand, viscous modeling underestimates the pressures drops, especially at the higher apparent shear rates and L/D ratios. It is concluded that wall slip effects are significant for HDPE flow, whereas viscous heating is not. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据