4.6 Article

Molecular understanding of ion specificity at the peptide bond

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 5, 页码 3241-3249

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp04055d

关键词

-

资金

  1. National Natural Science Foundation of China [21473252, 21173267]

向作者/读者索取更多资源

The Hofmeister series has remained a mystery for more than a century. A detailed understanding of the interactions in ion-dissolved systems is still needed because the classical theories have failed to accommodate the specific ion effects. In this study, the interactions between ions, solvent and a model compound for proteins were explored using a direct nuclear magnetic resonance (NMR) approach along with density functional theory (DFT) calculations. It was found that the chaotropic anions caused increasing chemical shifts of the model compound, while kosmotropic anions resulted in decreasing shifts; this suggests that the kosmotropic anions were prevented from interacting with the model compound. The experimental results can be explained by a combination of local electrostatic interactions and hydrogen bonding. Although more effort are required to justify the NMR method applied in this study, the results could give a quantitative standard for defining kosmotropes/chaotropes and might provide a new way for predicting the effects of unfamiliar ions in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据