4.7 Article

Amyloid-like self-assembly of a dodecapeptide sequence from the adenovirus fiber shaft: Perspectives from molecular dynamics simulations

期刊

JOURNAL OF NON-CRYSTALLINE SOLIDS
卷 357, 期 2, 页码 717-722

出版社

ELSEVIER
DOI: 10.1016/j.jnoncrysol.2010.05.083

关键词

Peptide-based nanostructures; Amyloids; Adenovirus; Molecular dynamics; Replica-exchange; Implicit-solvent

资金

  1. A.G. Leventis Foundation

向作者/读者索取更多资源

Peptide and protein self-assembly is related to the fundamental problems of protein folding and misfolding and has potential applications in medicine, materials science and nanotechnology. Sequence repeats from self-assembling proteins may provide useful elementary building blocks of peptide-based nanostructures. Sequences from the adenovirus fiber shaft self-assemble into amyloid-like fibrils outside their native context. In earlier simulations we studied the self-assembly of two shaft sequences, the octapeptide NSGAITIG and the hexapeptide GAITIG. Based on these simulations, cysteine residues were substituted at the first two positions of the octapeptide, yielding amyloid fibrils capable of binding to silver, gold and platinum nanoparticles. Here, we study by implicit-solvent replica-exchange simulations the self-assembly of a longer shaft sequence, the dodecapeptide LSFDNSGAITIG. The simulations provide insights on the molecular organization of the corresponding fibers. Individual molecules tend to adopt hairpin-like conformations in the observed intermolecular beta-sheets, in line with the experimentally determined amyloid fiber diameters and the conformation of the peptide in the adenovirus fiber shaft. By analyzing the arrangement of individual peptides in the intermolecular sheets, we suggest possible structural models of the corresponding fibers and interpret their stability by energetic calculations. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据