4.5 Review

Electronic properties and electron-electron interactions in graphene quantum dots

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssr.201510251

关键词

graphene quantum dots; Hartree-Fock method; tight-binding Hamiltonian; screening; electron-electron interactions

向作者/读者索取更多资源

We review the electronic properties of graphene quantum dots (GQD) with emphasis on the role of electron-electron interactions. We describe the electronic properties using a combination of tight binding, Hartree-Fock (HF), density functional theory and configuration interaction methods applied to interacting electrons on pz orbitals of carbon atoms. The electron-electron interactions are computed using Slater orbitals and screened by the environment and sigma electrons. We show that the electronic properties of graphene can be tuned by the lateral size, shape, character of edge, number of layers and screening. In particular, the energy gap can be tuned from THz to UV by varying the size of graphene quantum dot. The dependence of the gap on the size can be understood in terms of confined Dirac fermions. The effect of edges and edge reconstruction is discussed using ab-initio techniques. The role of screening is investigated using the HF approach. HF ground states corresponding to semiconductor, Mott-insulator, and spin-polarized phases are obtained as a function of the strength of the screened Coulomb interactions. For GQDs in the semiconductor phase, the role of correlations in ground and excited states is computed perturbatively and shown to result in size dependent band gap renormalization. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据