4.5 Article

Chronic Spinal Compression Model in Minipigs: A Systematic Behavioral, Qualitative, and Quantitative Neuropathological Study

期刊

JOURNAL OF NEUROTRAUMA
卷 29, 期 3, 页码 499-513

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/neu.2011.2076

关键词

axonal loss; chronic spinal injury; minipig; paraplegia

资金

  1. National Institutes of Health [NS051644]
  2. Research & Development Operational Program
  3. ERDF from RDOP [26220220127]
  4. Slovak Scientific Grant Agency VEGA [2/0191/11]
  5. Ministry of Education, Youth and Sports of Czech Republic [1M0538]
  6. Technology Agency of Czech Republic [TA01011466]
  7. Academy of Sciences of Czech Republic [AV0Z50450515]
  8. Veterans Health Administration

向作者/读者索取更多资源

The goal of the present study was to develop a porcine spinal cord injury (SCI) model, and to describe the neurological outcome and characterize the corresponding quantitative and qualitative histological changes at 4-9 months after injury. Adult Gottingen-Minnesota minipigs were anesthetized and placed in a spine immobilization frame. The exposed T12 spinal segment was compressed in a dorso-ventral direction using a 5-mm-diameter circular bar with a progressively increasing peak force (1.5, 2.0, or 2.5 kg) at a velocity of 3 cm/sec. During recovery, motor and sensory function were periodically monitored. After survival, the animals were perfusion fixed and the extent of local SCI was analyzed by (1) post-mortem MRI analysis of dissected spinal cords, (2) qualitative and quantitative analysis of axonal survival at the epicenter of injury, and (3) defining the presence of local inflammatory changes, astrocytosis, and schwannosis. Following 2.5-kg spinal cord compression the animals demonstrated a near complete loss of motor and sensory function with no recovery over the next 4-9 months. Those that underwent spinal cord compression with 2 kg force developed an incomplete injury with progressive partial neurological recovery characterized by a restricted ability to stand and walk. Animals injured with a spinal compression force of 1.5 kg showed near normal ambulation 10 days after injury. In fully paralyzed animals (2.5 kg), MRI analysis demonstrated a loss of spinal white matter integrity and extensive septal cavitations. A significant correlation between the magnitude of loss of small and medium-sized myelinated axons in the ventral funiculus and neurological deficits was identified. These data, demonstrating stable neurological deficits in severely injured animals, similarities of spinal pathology to humans, and relatively good post-injury tolerance of this strain of minipigs to spinal trauma, suggest that this model can successfully be used to study therapeutic interventions targeting both acute and chronic stages of SCI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据