4.5 Article

Rate of Neurodegeneration in the Mouse Controlled Cortical Impact Model Is Influenced by Impactor Tip Shape: Implications for Mechanistic and Therapeutic Studies

期刊

JOURNAL OF NEUROTRAUMA
卷 28, 期 11, 页码 2245-2262

出版社

MARY ANN LIEBERT INC
DOI: 10.1089/neu.2010.1499

关键词

axonal injury; behavior; contusion; finite element modeling; neuronal death; traumatic brain injury

资金

  1. NIH [P01 NS058484, P30 NS051220]
  2. KSCHIRT [6-12, 7-20, 8-15A]
  3. Injury Control Research Center at University of Alabama at Birmingham

向作者/读者索取更多资源

Controlled cortical impact (CCI), one of the most common models of traumatic brain injury, is being increasingly used with mice for exploration of cell injury mechanisms and pre-clinical evaluation of therapeutic strategies. Although CCI brain injury was originally effected using an impactor with a rounded tip, the majority of studies with mouse CCI use a flat or beveled tip. Recent finite element modeling analyses demonstrate that tip geometry is a significant determinant of predicted cortical tissue strains in rat CCI, and that cell death is proportional to predicted tissue strains. In the current study, a three-dimensional finite element model of a C57BL/6J mouse brain predicted higher maximum principal strains during a simulated 1.0-mm, 3.5-m/s CCI injury with a flat tip when compared to a rounded tip. Consistent with this prediction, experimental CCI with a flat-tip impactor resulted in greater acute cortical hemorrhage and neuron loss in adult male C57BL/6J mice. The amount of neocortical tissue damage was equivalent for the two tip geometries at 9 days following injury, but the rate of neocortical neurodegeneration was markedly slower following CCI with a rounded-tip impactor, with damage reaching a plateau after 24 h as opposed to after 4 h for the flat tip. The flat-tip impactor was associated in general with more regional hippocampal neurodegeneration, especially at early time points such as 4 h. Impactor tip geometry did not have a notable effect on blood-brain barrier breakdown, traumatic axonal injury, or motor and cognitive dysfunction. Execution of CCI injury with a rounded-tip impactor is posited to provide a substantially enhanced temporal window for the study of cellular injury mechanisms and therapeutic intervention while maintaining critical aspects of the pathophysiological response to contusion brain injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据