4.5 Article

Structural and Functional Changes in Nerve Roots Due to Tension at Various Strains and Strain Rates: An In-Vivo Study

期刊

JOURNAL OF NEUROTRAUMA
卷 26, 期 4, 页码 627-640

出版社

MARY ANN LIEBERT INC
DOI: 10.1089/neu.2008.0621

关键词

functional injury; spinal nerve roots; strain; strain rate; structural injury

资金

  1. Aircast Foundation

向作者/读者索取更多资源

This study investigates the functional and structural responses of spinal nerve roots in vivo to various strains and strain rates. Seventy-two L5 dorsal nerve roots from male Sprague-Dawley rats were each subjected to a predetermined strain (<10%, 10-20%, and >20%; n = 8) and rate (0.01 mm/sec, 1 mm/sec, or 15 mm/sec; n = 24). Neurophysiologic recordings were performed before and after stretch to determine changes in conduction velocity (CV), amplitude, and area of the compound action potential (CAP). Morphological injury as evident by primary and secondary axotomy as well as impaired axoplasmic transport (IAT) was determined using the palmgren silver impregnation technique and beta APP immunostaining, respectively. The results from neurophysiologic recordings indicate that as strain and rate increased, there was a decrease in CV, amplitude, and area of the CAP. Further, high strains led to a complete conduction block that appeared to be rate dependent. Strains of 16%, 10%, and 9%, at 0.01 mm/sec, 1 mm/sec, and 15 mm/sec, respectively, led to 50% probability of complete conduction block in the nerve roots. Results from histological assessment indicate an increase in periaxonal spacing (secondary axotomy) and torn fibers (primary axotomy), as well as impaired IAT, with increasing strain and rate. Overall, the results from the current study indicate that (1) functional nerve root injuries as evident by changes in the CV, amplitude, and area of the CAP are strain- and rate-dependent; (2) high strains at low rates cause complete conduction block in the roots, while a similar block was observed at lower strains at the high rate; (3) the extent of IAT and primary and secondary axotomy occurred concomitant with functional injury and were strain- and rate-dependent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据