4.6 Article

Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy Clinical article

期刊

JOURNAL OF NEUROSURGERY
卷 119, 期 2, 页码 288-300

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/2013.3.JNS121041

关键词

individual differences; temporal lobe epilepsy; default mode network; functional magnetic resonance imaging; graph theory; independent component analysis

资金

  1. National Institute of Neurological Disorders and Stroke of the NIH [K23 NS049100, K02 NS070960]
  2. National Center for Research Resources [UL1RR029884]
  3. KL2 Scholars Program [KL2RR029883]

向作者/读者索取更多资源

Object. Functional neuroimaging has shown that the brain organizes into several independent networks of spontaneously coactivated regions during wakeful rest (resting state). Previous research has suggested that 1 such network, the default mode network (DMN), shows diminished recruitment of the hippocampus with temporal lobe epilepsy (TLE). This work seeks to elucidate how hippocampal recruitment into the DMN varies by hemisphere of epileptogenic focus. Methods. The authors addressed this issue using functional MRI to assess resting-state DMN connectivity in 38 participants (23 control participants, 7 patients with TLE and left-sided epileptogenic foci, and 8 patients with TLE and right-sided foci). Independent component analysis was conducted to identify resting-state brain networks from control participants' data. The DMN was identified and deconstructed into its individual regions of interest (ROIs). The functional connectivity of these ROIs was analyzed both by hemisphere (left vs right) and by laterality to the epileptogenic focus (ipsilateral vs contralateral). Results. This attempt to replicate previously published methods with this data set showed that patients with left-sided TLE had reduced connectivity between the posterior cingulate (PCC) and both the left (p = 0.012) and right (p <0.002) hippocampus, while patients with right-sided TLE showed reduced connectivity between the PCC and right hippocampus (p < 0.004). After recoding ROIs by laterality, significantly diminished functional connectivity was observed between the PCC and hippocampus of both hemispheres (ipsilateral hippocampus, p < 0.001; contralateral hippocampus, p = 0.017) in patients with TLE compared with control participants. Regression analyses showed the reduced DMN recruitment of the ipsilateral hippocampus and parahippocampal gyms (PHG) to be independent of clinical variables including hippocampal sclerosis, seizure frequency, and duration of illness. The graph theory metric of strength (or mean absolute correlation) showed significantly reduced connectivity of the ipsilateral hippocampus and ipsilateral PHG in patients with TLE compared with controls (hippocampus: p = 0.028; PHG: p = 0.021, after correction for false discovery rate) Finally, these hemispheric asymmetries in strength were observed in patients with TLE that corresponded to hemisphere of epileptogenic focus; 87% of patients with TLE had weaker ipsilateral hippocampus strength (compared with the contralateral hippocampus), and 80% of patients had weaker ipsilateral PHG strength. Conclusions. This study demonstrated that recoding brain regions by the laterality to their epileptogenic focus increases the power of statistical approaches for finding interhemispheric differences in brain function. Using this approach, the authors showed TLE to selectively diminish connectivity of the hippocampus and parahippocampus in the hemisphere of the epileptogenic focus. This approach may prove to be a useful method for determining the seizure onset zone with TLE, and could be broadly applied to other neurological disorders with a lateralized onset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据