4.6 Article

Evaluation of a bispecific biological drug designed to simultaneously target glioblastoma and its neovasculature in the brain

期刊

JOURNAL OF NEUROSURGERY
卷 114, 期 6, 页码 1662-1671

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/2010.11.JNS101214

关键词

pseudomonas exotoxin; glioblastoma; xenograft model; epidermal growth factor; urokinase; brain tumor

资金

  1. National Cancer Institute [RO1-CA36725, RO1-CA082154]
  2. National Institute of Allergy and Infectious Diseases, US Department of Health and Human Services
  3. Martha L. Kramer Fund

向作者/读者索取更多资源

Object. The authors of this study aimed to genetically design a bispecific targeted toxin that would simultaneously target overexpressed markers on glioma as well as the tumor vasculature, to mutate certain amino acids to reduce the immunogenicity of this new drug. and to determine whether the drug was able to effectively reduce aggressive human brain tumors in a rat xenograft model via a novel hollow fiber (HF) catheter delivery system. Methods. A new bispecific ligand-directed toxin (BLT) was created in which 2 human cytokines-epidermal growth factor ([EGF], targeting overexpressed EGF receptor) and amino acid terminal fragment ([ATF], targeting urokinase plasminogen activator receptor)-were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin with a terminal lysyl-aspartyl-glutamyl-leucine (KDEL) sequence. Site-specific mutagenesis was used to mutate amino acids in 7 key epitopic toxin regions that dictate the B cell generation of neutralizing antitoxin antibodies to deimmunize the drug. now called EGFATFKDEL 7mut. Bioassays were used to determine whether mutation reduced the drug's potency. and enzyme-linked immunosorbent assay studies were performed to determine whether antitoxin antibodies were decreased. Aggressive brain tumors were intracranially established in nude rats by using human U87 glioma genetically marked with a firefly luciferase reporter gene (U87-luc), and the rats were stereotactically treated with 2 intracranial injections of deimmunized EGFATFKDEL via convection-enhanced delivery (CED). Drug was administered through a novel HF; catheter to reduce drug backflow upon delivery. Results. In vitro. EGFATFKDEL 7mut selectively killed the human glioblastoma cell line U87-luc as well as cultured human endothelial cells in the form of the human umbilical vein endothelial cells. Deimmunization did not reduce drug activity. In vivo. when rats with brain tumors were intracranially treated with drug via CED and a novel HE catheter to reduce backflow, there were significant tumor reductions in 2 experiments (p < 0.01). Some rats survived with a tumor-free status until 130 days post-tumor inoculation. An irrelevant BLT control did not protect establishing specificity. The maximal tolerated dose of EGFATFKDEL 7mut was established at 2 mu g/injection or 8.0 mu g/kg, and data indicated that this dose was nontoxic. Antitoxin antibodies were reduced by at least 90%. Conclusions. First, data indicated that the BLT framework is effective for simultaneously; targeting glioma and its neovasculatnre. Second, in the rodent CED studies, newly developed HE catheters that limit backflow are effective for drug delivery. Third, by mutating critical amino acids, the authors reduced the threat of the interference of neutralizing antibodies that are generated against the drug. The authors' experiments addressed some of the most urgent limitations in the targeted toxin field. (DOI: 10.3171/2010.11.JNS101214)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据