4.5 Article

Pulsed electromagnetic fields potentiate neurite outgrowth in the dopaminergic MN9D cell line

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 92, 期 6, 页码 761-771

出版社

WILEY
DOI: 10.1002/jnr.23361

关键词

cAMP; plasticity; neurite outgrowth; pulsed electromagnetic field; neuronal differentiation

资金

  1. NIH [NS052576]

向作者/读者索取更多资源

Pulsed electromagnetic fields (PEMF) exert biological effects and are in clinical use to facilitate bone repair and wound healing. Research has demonstrated that PEMF can induce signaling molecules and growth factors, molecules that play important roles in neuronal differentiation. Here, we tested the effects of a low-amplitude, nonthermal, pulsed radiofrequency signal on morphological neuronal differentiation in MN9D, a dopaminergic cell line. Cells were plated in medium with 10% fetal calf serum. After 1 day, medium was replaced with serum-containing medium, serum-free medium, or medium supplemented with dibutyryl cyclic adenosine monophosphate (Bt(2)cAMP), a cAMP analog known to induce neurite outgrowth. Cultures were divided into groups and treated with PEMF signals for either 30 min per day or continuously for 15 min every hour for 3 days. Both serum withdrawal and Bt(2)cAMP significantly increased neurite length. PEMF treatment similarly increased neurite length under both serum-free and serum-supplemented conditions, although to a lesser degree in the presence of serum, when continuous treatments had greater effects. PEMF signals also increased cell body width, indicating neuronal maturation, and decreased protein content, suggesting that this treatment was antimitotic, an effect reversed by the inhibitor of cAMP formation dideoxyadenosine. Bt(2)cAMP and PEMF effects were not additive, suggesting that neurite elongation was achieved through a common pathway. PEMF signals increased cAMP levels from 3 to 5 hr after treatment, supporting this mechanism of action. Although neuritogenesis is considered a developmental process, it may also represent the plasticity required to form and maintain synaptic connections throughout life. (c) 2014 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据