4.5 Review

ID2: A negative transcription factor regulating oligodendroglia differentiation

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 90, 期 5, 页码 925-932

出版社

WILEY
DOI: 10.1002/jnr.22826

关键词

ID2; oligodendrogenesis; differentiation; OPC; pathway

资金

  1. National Natural Science Foundation of China [31071056]
  2. Natural Science Foundation of CQ CSTC [2011jjA10029]

向作者/读者索取更多资源

Remyelination of the central nervous system in multiple sclerosis patients is often incomplete. Remyelination depends on normal oligodendrogenesis and the differentiation of oligodendrocyte precursor cells (OPC) into mature oligodendrocytes (OL). Inhibitor of DNA binding (ID), a transcription factor, is thought to inhibit oligodendrogenesis and the differentiation of OPC. This Mini-Review aims to reveal the roles of and mechanisms used by IDs (mainly ID2) in this process. An interaction between ID2 and retinoblastoma tumor suppressor is responsible for the cell cycle transition from G1 to S. The translocation of ID2 between the nucleus and cytoplasm is regulated by E47 and OLIG. An interaction between ID2 and OLIG mediates the inhibitory effects of bone morphogenic proteins and G protein-coupled receptor 17 on oligodendroglia differentiation. ID2 expression is regulated by Wnt and histone deacetylases during the differentiation of OPC. ID4, another member of the ID family, functions similarly to ID2 in regulating the differentiation of OPC. The main difference is that ID4 is essential for oligodendrogenesis, whereas ID2 is nonessential. This could have important implications for demyelinating diseases, and interfering with these pathways might represent a viable therapeutic approach for these diseases. (C) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据