4.5 Review

The FE65 proteins and Alzheimer's disease

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 86, 期 4, 页码 744-754

出版社

WILEY
DOI: 10.1002/jnr.21532

关键词

adaptor protein; amyloid precursor protein; Tip60; mena; lipoprotein receptor; neurodevelopment

资金

  1. Medical Research Council [G0000749, G0501573] Funding Source: Medline
  2. Wellcome Trust Funding Source: Medline
  3. MRC [G0501573, G0000749] Funding Source: UKRI

向作者/读者索取更多资源

The FE65s (FE65, FE65L1, and FE65L2) are a family of multidomain adaptor proteins that form multiprotein complexes with a range of functions. FE65 is brain-enriched, whereas FE65L1 and FE65L2 are more widely expressed. All three members contain a WW domain and two PTB domains. Through the PTB2 domain, they all interact with the Alzheimer's disease amyloid precursor protein (APP) intracellular domain (AICD) and can alter APP processing. After sequential proteolytic processing of membrane-bound APP and release of AICD to the cytoplasm, FE65 can translocate to the nucleus to participate in gene transcription events. This role is further mediated by interactions of FE65 PTB1 with the transcription factors CP2/LSF/LBP1 and Tip60 and the WW domain with the nucleosome assembly factor SET. However, FE65 target genes have not yet been confirmed. The FE65 PTB1 domain also interacts with two cell surface lipoproteins receptors, the low-density lipoprotein receptor-related protein (LRP) and ApoEr2, forming trimeric complexes with APP. The FE55 WW domain also binds to mena, through which it functions in regulation of the actin cytoskeleton, cell motility, and neuronal growth cone formation. While single knockout mice appear normal, double FE65(-/-)/FE65L1(-/-) mice have substantial neurodevelopmental defects. These include heterotopic neurons and axonal pathfinding defects, findings similar to findings in both Mena, and triple APP:APLP1:APLP2 knockout mice and also lissencephalopathies in humans. Thus APPs, FE65s, and mena may act together in a developmental signalling pathway. This article reviews the known functions of the FE65 family and their role in APP function and Alzheimer's disease. (c) 2007 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据