4.5 Article

Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 86, 期 6, 页码 1254-1266

出版社

WILEY
DOI: 10.1002/jnr.21578

关键词

neuronal differentiation; neurite outgrowth; cerebellar granule neurons; P19 embryonic carcinoma cells; RNAi; NF-kappa B; GTPases; Rac1; Cdc42

资金

  1. NICHD NIH HHS [P01-HD05505] Funding Source: Medline

向作者/读者索取更多资源

The receptor for advanced glycation end products (RAGE) plays a crucial role in several disease processes, such as diabetes, inflammation, and neurodegeneration. In this article we report multiple roles of RAGE in neuronal differentiation and neurite outgrowth. In retinoic-induced P19 embryonic carcinoma stem cells, silencing the expression of RAGE by RNA interference (RNAi) blocked differentiation of the P19 cells into neuronal cells and enhanced the formation of vimentin-positive fibroblast-like cells. RAGE knockdown inhibited retinoic acid-induced activation and blocked nuclear translocation of NF-kappa B, suggesting RAGE regulates activation of NF-kappa B. RAGE was also shown to be involved in survival of P19 cells during retinoic acid differentiation. Additionally, knockdown of RAGE strongly inhibited neurite outgrowth in retinoic acid-differentiated P19 cells, indicating that RAGE is required for neurite outgrowth of differentiated P19 cells. Retinoic acid-treated P19 cells activated GTPases, Rac1, and Cdc42. This activation of the GTPases was inhibited in RAGE-knockdown cells. In primary cerebellar granule neurons, the knockdown of RAGE also inhibited neurite outgrowth. In these cells, overexpression of dominant-negative forms of Rac1 and Cdc42 inhibited neurite outgrowth, whereas overexpression of constitutively active forms of Rac1 and Cdc42 in RAGE-deficient neurons restored neurite outgrowth, indicating that RAGE mediated neurite outgrowth through the Rac1/Cdc42 pathway. This is the first report on the role of RAGE in cell lines and primary neurons, as determined by RNAi knockdown. (C) 2007 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据