4.4 Article

Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 309, 期 -, 页码 109-120

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2018.08.023

关键词

Neuronavigation; Transcranial magnetic stimulation; Localization error; Co-registration; Coil positioning; Surgical planning

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [FAPESP] [2005/03293-2, 2009/09064-6, 2012/11937-0]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [CNPq] [140787/2014-3]
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior [CAPES] [DS447446]

向作者/读者索取更多资源

Background: Neuronavigation provides visual guidance of an instrument during procedures of neurological interventions, and has been shown to be a valuable tool for accurately positioning transcranial magnetic stimulation (TMS) coils relative to an individual's anatomy. Despite the importance of neuronavigation, its high cost, low portability, and low availability of magnetic resonance imaging facilities limit its insertion in research and clinical environments. New method: We have developed and validated the InVesalius Navigator as the first free, open-source software for image-guided navigated TMS, compatible with multiple tracking devices. A point-based, co-registration algorithm and a guiding interface were designed for tracking any instrument (e.g. TMS coils) relative to anindividual's anatomy. Results: Localization, precision errors, and repeatability were measured for two tracking devices during navigation in a phantom and in a simulated TMS study. Errors were measured in two commercial navigated TMS systems for comparison. Localization error was about 1.5 mm, and repeatability was about 1 mm for translation and 1 for rotation angles, both within limits established in the literature. Comparison with existing methods: Existing TMS neuronavigation software programs are not compatible with multiple tracking devices, and do not provide an easy to implement platform for custom tools. Moreover, commercial alternatives are expensive with limited portability. Conclusions: InVesalius Navigator might contribute to improving spatial accuracy and the reliability of techniques for brain interventions by means of an intuitive graphical interface. Furthermore, the software can be easily integrated into existing neuroimaging tools, and customized for novel applications such as multi-locus and/or controllable-pulse TMS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据