4.4 Article

NEDE: An open-source scripting suite for developing experiments in 3D virtual environments

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 235, 期 -, 页码 245-251

出版社

ELSEVIER
DOI: 10.1016/j.jneumeth.2014.06.033

关键词

Experimental design; 3D stimuli; Virtual environment; Eye tracking; EEG; BCI

资金

  1. Army Research Laboratory
  2. [W911NF-10-2-0022]

向作者/读者索取更多资源

Background: As neuroscientists endeavor to understand the brain's response to ecologically valid scenarios, many are leaving behind hyper-controlled paradigms in favor of more realistic ones. This movement has made the use of 3D rendering software an increasingly compelling option. However, mastering such software and scripting rigorous experiments requires a daunting amount of time and effort. New method: To reduce these startup costs and make virtual environment studies more accessible to researchers, we demonstrate a naturalistic experimental design environment (NEDE) that allows experimenters to present realistic virtual stimuli while still providing tight control over the subject's experience. NEDE is a suite of open-source scripts built on the widely used Unity3D game development software, giving experimenters access to powerful rendering tools while interfacing with eye tracking and EEG, randomizing stimuli, and providing custom task prompts. Results: Researchers using NEDE can present a dynamic 3D virtual environment in which randomized stimulus objects can be placed, allowing subjects to explore in search of these objects. NEDE interfaces with a research-grade eye tracker in real-time to maintain precise timing records and sync with EEG or other recording modalities. Comparison with existing methods: Python offers an alternative for experienced programmers who feel comfortable mastering and integrating the various toolboxes available. NEDE combines many of these capabilities with an easy-to-use interface and, through Unity's extensive user base, a much more substantial body of assets and tutorials. Conclusions: Our flexible, open-source experimental design system lowers the barrier to entry for neuroscientists interested in developing experiments in realistic virtual environments. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据