4.4 Article

Appraisal of the effect of brain impregnation duration on neuronal staining and morphology in a modified Golgi-Cox method

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 235, 期 -, 页码 193-207

出版社

ELSEVIER
DOI: 10.1016/j.jneumeth.2014.07.007

关键词

Golgi-Cox staining; Impregnation; Cytoarchitecture; Hippocampus; Amygdala

资金

  1. Indian Council of Medical Research (ICMR) [5/10/FR/21/2011-RHN, 2011-08800]

向作者/读者索取更多资源

Background: Golgi-Cox staining method is considered as one of the best neurohistological and fascinating staining techniques to reveal the cytoarchitecture of the brain. Requirement of longer time (more than a month), laborious section processing steps, requirement of sophisticated equipment's and costly ready to use kits limits extensive use of this technique. New method: The need for a modified staining technique is to overcome some of these hurdles. Here we describe a modification of Golgi-Cox staining involving reduced impregnation time (7 days), omitting tissue dehydration steps, and alterations in section processing steps. Different impregnation duration (7 days, 14 days, 1 month, 6 months and 10 months) effects on optimized staining of dorsal hippocampus and basolateral amygdala were investigated. Results: Modified Golgi-Cox staining method was found to be effective in staining rat hippocampus and amygdala. Impregnation for 7 days, 14 days and 1 month resulted in giving good results and they were comparable. However, artifacts were slightly elevated with 6 months group but not extensively. Impregnation for 10 months negatively affected the staining process. Comparison with existing method(s): Compared to existing methods the current method was found to be cost effective, fast, reliable and can be executed in labs where infrastructure is limited. Conclusions: Current modification considerably benefitted in obtaining better results (good clarity and lesser artifact) in a short time. Longer impregnated brain sections were found to be unsuitable for morphometric evaluation due to more stain precipitation and artifact. The modified technique can be used to study cellular architecture in other brain regions. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据