4.4 Article

Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 217, 期 1-2, 页码 9-16

出版社

ELSEVIER
DOI: 10.1016/j.jneumeth.2013.03.019

关键词

Seizure prediction; Epilepsy; Classification; Features selection; Space reduction

资金

  1. [EU FP7 211713 EPILEPSIAE]
  2. [iCIS - CENTRO-07-0224-FEDER-002003]

向作者/读者索取更多资源

Combining multiple linear univariate features in one feature space and classifying the feature space using machine learning methods could predict epileptic seizures in patients suffering from refractory epilepsy. For each patient, a set of twenty-two linear univariate features were extracted from 6 electroencephalogram (EEG) signals to make a 132 dimensional feature space. Preprocessing and normalization methods of the features, which affect the output of the seizure prediction algorithm, were studied in terms of alarm sensitivity and false prediction rate (FPR). The problem of choosing an optimal preictal time was tackled using 4 distinct values of 10, 20, 30, and 40 min. The seizure prediction problem has traditionally been considered a two-class classification problem, which is also exercised here. These studies have been conducted on the features obtained from 10 patients. For each patient, 48 different combinations of methods are compared to find the best configuration. Normalization by dividing by the maximum and smoothing are found to be the best configuration in most of the patients. The results also indicate that applying machine learning methods on a multidimensional feature space of 22 univariate features predicted seizure onsets with high performance. On average, the seizures were predicted in 73.9% of the cases (34 out of 46 in 737.9 h of test data), with a FPR of 0.15 h(-1). (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据