4.4 Article

Microscopic magnetic resonance elastography of traumatic brain injury model

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 201, 期 2, 页码 296-306

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2011.08.019

关键词

Traumatic brain injury; Microscopic magnetic resonance; elastography; Inverse problem; Rat brain; In vivo mouse

资金

  1. UNL/UNMC
  2. NIH [RO3-EB007299-02]
  3. NIH COBRE Nebraska Center for Nanomedicine [RR021937]

向作者/读者索取更多资源

Traumatic brain injury (TB!) is a major cause of death and disability for which there is no cure. One of the issues inhibiting clinical trial success is the lack of targeting specific patient populations due to inconsistencies between clinical diagnostic tools and underlying pathophysiology. The development of reliable, noninvasive markers of TBI severity and injury mechanisms may better identify these populations, thereby improving clinical trial design. Magnetic resonance elastography (MRE), by assessing tissue mechanical properties, can potentially provide such marker. MRE synchronizes mechanical excitations with a phase contrast imaging pulse sequence to noninvasively register shear wave propagation, from which local values of tissue viscoelastic properties can be deduced. The working hypothesis of this study is that TBI involves a compression of brain tissue large enough to bring the material out of its elastic range, sufficiently altering mechanical properties to generate contrast on MRE measurements. To test this hypothesis, we combined microscopic MRE with brain tissue collected from adult male rats subjected to a controlled cortical impact injury. Measurements were made in different regions of interest (somatosensory cortex, hippocampus, and thalamus), and at different time points following the injury (immediate, 24 h, 7 days, 28 days). Values of stiffness in the somatosensory cortex were found to be 23-32% lower in the injured hemisphere than in the healthy one, when no significant difference was observed in the case of sham brains. A preliminary in vivo experiment is also presented, as well as alternatives to improve the faithfulness of stiffness recovery. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据