4.4 Article

The individual adjustment method of sleep spindle analysis: Methodological improvements and roots in the fingerprint paradigm

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 178, 期 1, 页码 205-213

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2008.11.006

关键词

Polysomnography; Electroencephalogram; Cortical synchronization; Digital signal processing; Sleep spindles; Automated pattern recognition

资金

  1. National Office for Research and Technology [NKFP-1 B/020/04]
  2. National Research Fund [TS-049785, OTKA-48927]
  3. Hungarian Academy of Sciences

向作者/读者索取更多资源

Evidence supports the robustness and stability of individual differences in non-rapid eye movement (NREM) sleep electroencephalogram (EEG) spectra with a special emphasis on the 9-16 Hz range corresponding to sleep spindle activity. These differences cast doubt on the universal validity of sleep spindle analysis methods based on strict amplitude and frequency criteria or a set of templates of natural spindles. We aim to improve sleep spindle analysis by the individual adjustments of frequency and amplitude criteria, the use of a minimum set of a priori knowledge, and by clear dissections of slow- and fast sleep spindles as well as to transcend the concept of visual inspection as being the ultimate test of the method's validity. We defined spindles as those segments of the NREM sleep EEG which contribute to the two peak regions within the 9-16 Hz EEG spectra. These segments behaved as slow- and fast sleep spindles in terms of topography and sleep cycle effects, while age correlated negatively with the occurrence of fast type events only. Automatic detections covered 92.9% of visual spindle detections (A&VD). More than half of the automatic detections (58.41%) were exclusively automatic detections (EADs). The spectra of EAD correlated significantly and positively with the spectra of A&VD as well as with the average (AVG) spectra. However, both EAD and A&VD had higher individual-specific spindle spectra than AVG had. Results suggest that the individual adjustment method (IAM) detects EEG segments possessing the individual-specific spindle spectra with higher sensitivity than visual scoring does. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据