4.4 Article

A scriptable DSP-based system for dynamic conductance injection

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 169, 期 2, 页码 271-281

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2007.10.016

关键词

conductance injection; dynamic clamp; NMDA receptor; spike generation; digital signal processing

向作者/读者索取更多资源

A variety of software and hardware systems have been developed to inject controlled electrical conductances into excitable cells, to investigate the physiological mechanisms of action potential generation. These systems face several challenges: the need to model complex conductances, including voltage-gated ion channels, synaptic conductances controlled by electrical models of entire cells or even networks of cells, to do so rapidly and stably, with precisely controlled update intervals of 20 mu s or less, and to present an easy and flexible interface to the user, allowing new experiments to be designed and executed easily. In this paper I describe a new software system (SM-2) which is designed to meet these requirements, and which runs on the current generation of digital-signal-processing (DSP) analog input-output I/O boards, hosted in Windows PCs. Its key innovation is its configurability by simple user-written text scripts, or scriptability, which gives it a high flexibility of purpose, and allows non-programmers the capacity to rapidly design and use new Hodgkin-Huxley-type active conductances, conductances with arbitrary current-voltage relationships, Markov process conductance mechanisms with user-specified rate matrices, and hybrid networks of virtual cells. At the same time, the hardware platform allows this to be achieved with a fast and accurately timed input-computation-output cycle. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据