4.7 Article

Synapsin Regulates Activity-Dependent Outgrowth of Synaptic Boutons at the Drosophila Neuromuscular Junction

期刊

JOURNAL OF NEUROSCIENCE
卷 34, 期 32, 页码 10554-10563

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5074-13.2014

关键词

active zone; electron microscopy; forskolin; FRAP; synaptic vesicle; synaptotagmin

资金

  1. National Institutes of Health [U54 NS083924, R01 MH099557]

向作者/读者索取更多资源

Patterned depolarization of Drosophila motor neurons can rapidly induce the outgrowth of new synaptic boutons at the larval neuromuscular junction (NMJ), providing a model system to investigate mechanisms underlying acute structural plasticity. Correlative light and electron microscopy analysis revealed that new boutons typically form near the edge of postsynaptic reticulums of presynaptic boutons. Unlike mature boutons, new varicosities have synaptic vesicles which are distributed uniformly throughout the bouton and undeveloped postsynaptic specializations. To characterize the presynaptic mechanisms mediating new synaptic growth induced by patterned activity, we investigated the formation of new boutons in NMJs lacking synapsin [Syn(-)], a synaptic protein important for vesicle clustering, neurodevelopment, and plasticity. We found that budding of new boutons at Syn(-) NMJs was significantly diminished, and that new boutons in Syn(-) preparations were smaller and had reduced synaptic vesicle density. Since synapsin is a target of protein kinase A (PKA), we assayed whether activity-dependent synaptic growth is regulated via a cAMP/PKA/synapsin pathway. We pretreated preparations with forskolin to raise cAMP levels and found this manipulation significantly enhanced activity-dependent synaptic growth in control but not Syn(-) preparations. To examine the trafficking of synapsin during synaptic growth, we generated transgenic animals expressing fluorescently tagged synapsin. Fluorescence recovery after photobleaching analysis revealed that patterned depolarization promoted synapsin movement between boutons. During new synaptic bouton formation, synapsin redistributed upon stimulation toward the sites of varicosity outgrowth. These findings support a model whereby synapsin accumulates at sites of synaptic growth and facilitates budding of new boutons via a cAMP/PKA-dependent pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据