4.7 Article

Dosage-Dependent Effect of Dopamine D2 Receptor Activation on Motor Cortex Plasticity in Humans

期刊

JOURNAL OF NEUROSCIENCE
卷 34, 期 32, 页码 10701-10709

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0832-14.2014

关键词

dopamine; dopamine receptors; neuroplasticity; paired associative stimulation; transcranial direct current stimulation; transcranial magnetic stimulation

资金

  1. German Research Foundation [NI 683/6-1]

向作者/读者索取更多资源

The neuromodulator dopamine plays an important role in synaptic plasticity. The effects depend on receptor subtypes, affinity, concentration level, and the kind of neuroplasticity induced. In animal experiments, dopamine D-2-like receptor stimulation revealed partially antagonistic effects on plasticity, which might be explained by dosage dependency. In humans, D-2 receptor block abolishes plasticity, and the D-2/D-3, but predominantly D-3, receptor agonist ropinirol has a dosage-dependent nonlinear affect on plasticity. Here we aimed to determine the specific affect of D-2 receptor activation on neuroplasticity in humans, because physiological effects of D-2 and D-3 receptors might differ. Therefore, we combined application of the selective D-2 receptor agonist bromocriptine (2.5, 10, and 20 mg or placebo medication) with anodal and cathodal transcranial direct current stimulation (tDCS), which induces nonfocal plasticity, and with paired associative stimulation (PAS) generating a more focal kind of plasticity in the motor cortex of healthy humans. Plasticity was monitored by transcranial magnetic stimulation-induced motor-evoked potential amplitudes. For facilitatory tDCS, bromocriptine prevented plasticity induction independent from drug dosage. However, its application resulted in an inverted U-shaped dose-response curve on inhibitory tDCS, excitability-diminishing PAS, and to a minor degree on excitability-enhancing PAS. These data support the assumption that modulation of D-2-like receptor activity exerts a nonlinear dose-dependent effect on neuroplasticity in the human motor cortex that differs from predominantly D-3 receptor activation and that the kind of plasticity-induction procedure is relevant for its specific impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据