4.7 Article

Functional Role of ATP Binding to Synapsin I In Synaptic Vesicle Trafficking and Release Dynamics

期刊

JOURNAL OF NEUROSCIENCE
卷 34, 期 44, 页码 14752-14768

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1093-14.2014

关键词

ATP binding; inhibitory transmission; molecular dynamics simulations; synapsins; synaptic ultrastructure; synaptic vesicles

资金

  1. Italian Ministry of University and Research
  2. EU [602531]
  3. Cure Epilepsy Advanced Innovator Award
  4. Telethon-Italy [GGP13033]
  5. IIT Platform Computation

向作者/读者索取更多资源

Synapsins (Syns) are synaptic vesicle (SV)-associated proteins involved in the regulation of synaptic transmission and plasticity, which display a highly conserved ATP binding site in the central C-domain, whose functional role is unknown. Using molecular dynamics simulations, we demonstrated that ATP binding to SynI is mediated by a conformational transition of a flexible loop that opens to make the binding site accessible; such transition, prevented in the K269Q mutant, is not significantly affected in the absence of Ca2+ or by the E373K mutation that abolishes Ca2+-binding. Indeed, the ATP binding to SynI also occurred under Ca2+-free conditions and increased its association with purified rat SVs regardless of the presence of Ca2+ and promoted SynI oligomerization. However, although under Ca2+-free conditions, SynI dimerization and SV clustering were enhanced, Ca2+ favored the formation of tetramers at the expense of dimers and did not affect SV clustering, indicating a role of Ca2+-dependent dimer/tetramer transitions in the regulation of ATP-dependent SV clustering. To elucidate the role of ATP/SynI binding in synaptic physiology, mouse SynI knock-out hippocampal neurons were transduced with either wild-type or K269Q mutant SynI and inhibitory transmission was studied by patch-clamp and electron microscopy. K269Q-SynI expressing inhibitory synapses showed increased synaptic strength due to an increase in the release probability, an increased vulnerability to synaptic depression and a dysregulation of SV trafficking, when compared with wild-type SynI-expressing terminals. The results suggest that the ATP-SynI binding plays predocking and postdocking roles in the modulation of SV clustering and plasticity of inhibitory synapses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据