4.7 Article

c-Jun N-Terminal Kinase Phosphorylation of Heterogeneous Nuclear Ribonucleoprotein K Regulates Vertebrate Axon Outgrowth via a Posttranscriptional Mechanism

期刊

JOURNAL OF NEUROSCIENCE
卷 33, 期 37, 页码 14666-U65

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4821-12.2013

关键词

-

资金

  1. National Science Foundation [IOS 951043, IOS 1257449]
  2. American Association of University Women Fellowship
  3. Sigma Xi
  4. Division Of Integrative Organismal Systems
  5. Direct For Biological Sciences [0951043, 1257449] Funding Source: National Science Foundation

向作者/读者索取更多资源

c-Jun N-terminal kinase (JNK) mediates cell signaling essential for axon outgrowth, but the associated substrates and underlying mechanisms are poorly understood. We identified in Xenopus laevis embryos a novel posttranscriptional mechanism whereby JNK regulates axonogenesis by phosphorylating a specific site on heterogeneous nuclear ribonucleoprotein K (hnRNP K). Both JNK inhibition and hnRNP K knockdown inhibited axon outgrowth and translation of hnRNP K-regulated cytoskeletal RNAs (tau and neurofilament medium), effects that were alleviated by expressing phosphomimetic, but not phosphodeficient, forms of hnRNP K. Immunohistochemical and biochemical analyses indicated that JNK phosphorylation of hnRNP K occurred within the cytoplasm and was necessary for the translational initiation of hnRNP K-targeted RNAs but not for hnRNP K intracellular localization or RNA binding. Thus, in addition to its known roles in transcription and cytoskeletal organization, JNK acts posttranscriptionally through hnRNP K to regulate translation of proteins crucial for axonogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据