4.7 Article

Size Does Not Always Matter: Ts65Dn Down Syndrome Mice Show Cerebellum-Dependent Motor Learning Deficits that Cannot Be Rescued by Postnatal SAG Treatment

期刊

JOURNAL OF NEUROSCIENCE
卷 33, 期 39, 页码 15408-15413

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2198-13.2013

关键词

-

资金

  1. Dutch Organization for Medical Sciences
  2. Life Sciences
  3. C7 programs of the European Community
  4. Down Syndrome Research and Treatment Foundation
  5. Research Down Syndrome [R01HD038384-13]

向作者/读者索取更多资源

Humans with Down syndrome (DS) and Ts65Dn mice both show a reduced volume of the cerebellum due to a significant reduction in the density of granule neurons. Recently, cerebellar hypoplasia in Ts65Dn mice was rescued by a single treatment with SAG, an agonist of the Sonic hedgehog pathway, administered on the day of birth. In addition to normalizing cerebellar morphology, this treatment restored the ability to learn a spatial navigation task, which is associated with hippocampal function. It is not clear to what extent this improved performance results from restoration of the cerebellar architecture or a yet undefined role of Sonic hedgehog (Shh) in perinatal hippocampal development. The absence of a clearly demonstrated deficit in cerebellar function in trisomic mice exacerbates the problem of discerning how SAG acts to improve learning and memory. Here we show that phase reversal adaptation and consolidation of the vestibulo-ocular reflex is significantly impaired in Ts65Dn mice, providing for the first time a precise characterization of cerebellar functional deficits in this murine model of DS. However, these deficits do not benefit from the normalization of cerebellar morphology following treatment with SAG. Together with the previous observation that the synaptic properties of Purkinje cells are also unchanged by SAG treatment, this lack of improvement in a region-specific behavioral assay supports the possibility that a direct effect of Shh pathway stimulation on the hippocampus might explain the benefits of this potential approach to the improvement of cognition in DS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据