4.7 Article

Fear Conditioning Enhances Gamma Oscillations and Their Entrainment of Neurons Representing the Conditioned Stimulus

期刊

JOURNAL OF NEUROSCIENCE
卷 33, 期 13, 页码 5705-+

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4915-12.2013

关键词

-

资金

  1. National Institutes of Health-National Institute on Deafness and Other Communication Disorders [DC-02938]

向作者/读者索取更多资源

Learning alters the responses of neurons in the neocortex, typically strengthening their encoding of behaviorally relevant stimuli. These enhancements are studied extensively in the auditory cortex by characterizing changes in firing rates and evoked potentials. However, synchronous activity is also important for the processing of stimuli, especially the relationship between gamma oscillations in the local field potential and spiking. We investigated whether tone/shock fear conditioning in rats, a task known to alter responses in auditory cortex, also modified the relationship between gamma and unit activity. A boost in gamma oscillations developed, especially at sites tuned near the tone, and strengthened across multiple conditioning sessions. Unit activity became increasingly phase-locked to gamma, with sites tuned near the tone developing enhanced phase-locking during the tone, whereas those tuned away maintained a tendency to decrease their phase-locking. Enhancements in the coordination of spiking between sites tuned near the tone developed within the first conditioning session and remained throughout the rest of training. Enhanced cross-covariances in unit activity were strongest for subjects that exhibited robust conditioned fear. These results illustrate that changes in sensory cortex during associative learning extend to the coordination of neurons encoding the relevant stimulus, with implications for how it is processed downstream.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据