4.7 Article

Toll/Interleukin-1 Receptor Domain-Containing Adapter Inducing Interferon-β Mediates Microglial Phagocytosis of Degenerating Axons

期刊

JOURNAL OF NEUROSCIENCE
卷 32, 期 22, 页码 7745-7757

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0203-12.2012

关键词

-

资金

  1. Johns Hopkins Institute for Nanobiotechnology
  2. National Institutes of Health [1F31NS066753-01]
  3. National Institute on Drug Abuse [K08DA22946]
  4. Howard Hughes Medical Institute

向作者/读者索取更多资源

Following CNS injury, microglial phagocytosis of damaged endogenous tissue is thought to play an important role in recovery and regeneration. Previous work has focused on delineating mechanisms of clearance of neurons and myelin. Little, however, is known of the mechanisms underlying phagocytosis of axon debris. We have developed a novel microfluidic platform that enables coculture of microglia with bundles of CNS axons to investigate mechanisms of microglial phagocytosis of axons. Using this platform, we find that axon degeneration results in the induction of type-1 interferon genes within microglia. Pharmacologic and genetic disruption of Toll/interleukin-1 receptor domain-containing adapter inducing interferon-beta (TRIF), a Toll-like receptor adapter protein, blocks induction of the interferon response and inhibits microglial phagocytosis of axon debris in vitro. In vivo, microglial phagocytosis of axons following dorsal root axotomy is impaired in mice in which TRIF has been genetically deleted. Furthermore, we identify the p38 mitogen-activated protein kinase (MAPK) cascade as a signaling pathway downstream of TRIF following axon degeneration and find that inhibition of p38 MAPK by SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole) also blocked clearance of axon debris. Finally, we find that TRIF-dependent microglial clearance of unmyelinated axon debris facilitates axon outgrowth. Overall, we provide evidence that TRIF-mediated signaling plays an unexpected role in axonal debris clearance by microglia, thereby facilitating a more permissive environment for axonal outgrowth. Our study has significant implications for the development of novel regenerative and restorative strategies for the many traumatic, neuroinflammatory, and neurodegenerative conditions characterized by CNS axon degeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据