4.7 Article

Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation

期刊

JOURNAL OF NEUROSCIENCE
卷 32, 期 34, 页码 11750-11762

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0234-12.2012

关键词

-

资金

  1. Marie Curie International Reintegration Grant (Neurofold)
  2. EMBO Installation Grant
  3. Fundacao para a Ciencia e Tecnologia (FCT) [PTDC/QUI/73430/2006, PDCT/SAU-NMC/099853/2008, PDCT/SAU-NMC/110838/2009, SFRH/BD/60386/2009, SFRH/BD/27761/2006, SFRH/BPD/64702/2009]
  4. University of Rome Sapienza
  5. Fundação para a Ciência e a Tecnologia [SFRH/BD/60386/2009, SFRH/BD/27761/2006, PTDC/QUI/73430/2006] Funding Source: FCT

向作者/读者索取更多资源

Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of alpha-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据