4.7 Article

Decrease in Calcium Concentration Triggers Neuronal Retinoic Acid Synthesis during Homeostatic Synaptic Plasticity

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 49, 页码 17764-17771

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3964-11.2011

关键词

-

资金

  1. David and Lucile Packard Foundation
  2. W. M. Keck Foundation
  3. National Institute of Mental Health [1P50MH86403, 1R01MH091193]

向作者/读者索取更多资源

Blockade of synaptic activity induces homeostatic plasticity, in part by stimulating synthesis of all-trans retinoic acid (RA), which in turn increases AMPA receptor synthesis. However, the synaptic signal that triggers RA synthesis remained unknown. Using multiple activity-blockade protocols that induce homeostatic synaptic plasticity, here we show that RA synthesis is activated whenever postsynaptic Ca(2+) entry is significantly decreased and that RA is required for upregulation of synaptic strength under these homeostatic plasticity conditions, suggesting that Ca(2+) plays an inhibitory role in RA synthesis. Consistent with this notion, we demonstrate that both transient Ca(2+) depletion by membrane-permeable Ca(2+) chelators and chronic blockage of L-type Ca(2+)-channels induces RA synthesis. Moreover, the source of dendritic Ca(2+) entry that regulates RA synthesis is not specific because mild depolarization with KCl is sufficient to reverse synaptic scaling induced by L-type Ca(2+)-channel blocker. By expression of a dihydropyridine-insensitive L-type Ca(2+) channel, we further show that RA acts cell autonomously to modulate synaptic transmission. Our findings suggest that, in synaptically active neurons, modest basal levels of postsynaptic Ca(2+) physiologically suppress RA synthesis, whereas in synaptically inactive neurons, decreases in the resting Ca(2+) levels induce homeostatic plasticity by stimulating synthesis of RA that then acts in a cell-autonomous manner to increase AMPA receptor function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据