4.7 Article

Activity-Dependent Ubiquitination of the AMPA Receptor Subunit GluA2

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 8, 页码 3077-3081

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5944-10.2011

关键词

-

资金

  1. National Institute of Neurological Disorders and Stroke
  2. Le Fond de la Recherche en Sante du Quebec

向作者/读者索取更多资源

AMPA receptors (AMPARs) are postsynaptic glutamate-gated ion channels that mediate fast excitatory neurotransmission in the mammalian brain. Synaptic activity modulates the density of synaptic AMPARs, thereby affecting synaptic function, learning, and memory. Consequently, there is intense interest in defining the molecular mechanisms regulating AMPAR trafficking. Protein expression in the postsynaptic density of excitatory synapses is tightly regulated by ubiquitination, a posttranslational modification that dynamically regulates protein trafficking and degradation in response to synaptic activity. In this study, we demonstrate that increasing synaptic activity, via treatment with the GABA(A) receptor antagonist bicuculline, rapidly and robustly induces ubiquitination of the GluA2 AMPAR subunit. Similarly, treatment with AMPAR agonists results in GluA2 ubiquitination, which suggests that ligand binding plays a critical role. Finally, we find that clathrin-and dynamin-dependent endocytosis of AMPARs is required for activity-dependent GluA2 ubiquitination. Our finding that GluA2 undergoes activity-dependent ubiquitination expands our understanding of how ubiquitination regulates synaptic plasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据