4.7 Article

Keratan Sulfate Restricts Neural Plasticity after Spinal Cord Injury

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 47, 页码 17091-17102

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5120-10.2011

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan [23110002, 18390099, 20390092]
  2. Ministry of Health, Labor, and Welfare of Japan [H21-012]
  3. Grants-in-Aid for Scientific Research [23790360, 18390099, 21591897, 23570176] Funding Source: KAKEN

向作者/读者索取更多资源

Chondroitin sulfate (CS) proteoglycans are strong inhibitors of structural rearrangement after injuries of the adult CNS. In addition to CS chains, keratan sulfate (KS) chains are also covalently attached to some proteoglycans. CS and KS sometimes share the same core protein, but exist as independent sugar chains. However, the biological significance of KS remains elusive. Here, we addressed the question of whether KS is involved in plasticity after spinal cord injury. Keratanase II (K-II) specifically degraded KS, i.e., not CS, in vivo. This enzyme digestion promoted the recovery of motor and sensory function after spinal cord injury in rats. Consistent with this, axonal regeneration/sprouting was enhanced in K-II-treated rats. K-II and the CS-degrading enzyme chondroitinase ABC exerted comparable effects in vivo and in vitro. However, these two enzymes worked neither additively nor synergistically. These data and further in vitro studies involving artificial proteoglycans (KS/CS-albumin) and heat-denatured or reduced/alkylated proteoglycans suggested that all three components of the proteoglycan moiety, i.e., the core protein, CS chains, and KS chains, were required for the inhibitory activity of proteoglycans. We conclude that KS is essential for, and has an impact comparable to that of CS on, postinjury plasticity. Our study also established that KS and CS are independent requirements for the proteoglycan-mediated inhibition of axonal regeneration/sprouting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据