4.7 Article

Fragile X Mental Retardation Protein Regulates Protein Expression and mRNA Translation of the Potassium Channel Kv4.2

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 15, 页码 5693-5698

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.6661-10.2011

关键词

-

资金

  1. National Fragile X Foundation (NFXF)
  2. Emory University
  3. National Institutes of Health [MH085617]
  4. Fragile X Center [3P30HD024064]

向作者/读者索取更多资源

A prominent characteristic of the inherited intellectual impairment disease fragile X syndrome (FXS) is neuronal hyperexcitability, resulting in a variety of symptoms, such as hyperactivity, increased sensitivity to sensory stimuli, and a high incidence of epileptic seizures. These symptoms account for a significant part of the disease pattern, but the underlying molecular mechanisms of neuronal hyperexcitability in FXS remain poorly understood. FXS is caused by loss of expression of fragile X mental retardation protein (FMRP), which regulates synaptic protein synthesis and is a key player to limit signaling pathways downstream of metabotropic glutamate receptors 1/5 (mGlu1/5). Recent findings suggest that FMRP might also directly regulate voltage-gated potassium channels. Here, we show that total and plasma membrane protein levels of Kv4.2, the major potassium channel regulating hippocampal neuronal excitability, are reduced in the brain of an FXS mouse model. Antagonizing mGlu5 activity with 2-methyl-6-(phenylethynyl)-pyridine (MPEP) partially rescues reduced surface Kv4.2 levels in Fmr1 knock-out (KO) mice, suggesting that excess mGlu1/5 signal activity contributes to Kv4.2 dysregulation. As an additional mechanism, we show that FMRP is a positive regulator of Kv4.2 mRNA translation and protein expression and associates with Kv4.2 mRNA in vivo and in vitro. Our results suggest that absence of FMRP-mediated positive control of Kv4.2 mRNA translation, protein expression, and plasma membrane levels might contribute to excess neuronal excitability in Fmr1 KO mice, and thus imply a potential mechanism underlying FXS-associated epilepsy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据