4.5 Article

Effect of gate engineering in JLSRG MOSFET to suppress SCEs: An analytical study

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2014.11.013

关键词

Triple-Material gate; Junctionless transistor; Surrounding gate MOSFET; Centre potential; Surface potential; Electric Field; Threshold voltage; DIBL; TCAD ATLAS; SCEs

向作者/读者索取更多资源

In this work, an analytical model of gate-engineered junctionless surrounding gate MOSFET (JLSRG) has been proposed to uncover its potential benefit to suppress short-channel effects (SCEs). Analytical modelling of centre potential for gate-engineered JLSRG devices has been developed using parabolic approximation method. From the developed centre potential, the parameters like threshold voltage, surface potential, Electric Field, Drain-induced Barrier Lowering (DIBL) and subthershold swing are determined. A nice agreement between the results obtained from the model and TCAD simulation demonstrates the validity and correctness of the model. A comparative study of the efficacy to suppress SCEs for Dual-Material (DM) and Single-Material (SM) junctionless surrounding gate MOSFET of the same dimensions has also been carried out. Result indicates that TM-JLSRG devices offer a noticeable enhancement in the efficacy to suppress SCEs by as compared to SM-JLSRG and DM-JLSRG device structures. The effect of different length ratios of three channel regions related to three different gate materials of TM-JLSRG structure on the SCEs have also been discussed. As a result, we demonstrate that TM-JLSRG device can be considered as a competitive contender to the deep-submicron mainstream MOSFETs for low-power VLSI applications. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据