4.7 Article

Heparan Sulfate Sugar Modifications Mediate be Functions of Slits and Other Factors Needed for Mouse Forebrain Commissure Development

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 6, 页码 1955-1970

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2579-10.2011

关键词

-

资金

  1. Medical Research Council
  2. Biotechnology and Biological Sciences Research Council
  3. Wellcome Trust
  4. Medical Research Council [G0701460, G0800429] Funding Source: researchfish
  5. MRC [G0800429, G0701460] Funding Source: UKRI

向作者/读者索取更多资源

Heparan sulfate proteoglycans are cell surface and secretory proteins that modulate intercellular signaling pathways including Slit/Robo and FGF/FGFR. The heparan sulfate sugar moieties on HSPGs are subject to extensive postsynthetic modification, generating enormous molecular complexity that has been postulated to provide increased diversity in the ability of individual cells to respond to specific signaling molecules. This diversity could help explain how a relatively small number of axon guidance molecules are able to instruct the extremely complex connectivity of the mammalian brain. Consistent with this hypothesis, we previously showed that mutant mice lacking the heparan sulfotransferases (Hsts) Hs2st or Hs6st1 display major axon guidance defects at the developing optic chiasm. Here we further explore the role of these Hsts at the optic chiasm and investigate their function in corpus callosum development. Each Hst is expressed in a distinct pattern and each mutant displays a specific spectrum of axon guidance defects. Particular Hs2st(-/-) and Hs6st1(-/-) phenotypes closely match those of Slit1(-/-) and Slit2(-/-) embryos respectively, suggesting possible functional relationships. To test functional interactions between Hs2st or Hs6st1 and Slits we examined optic chiasm and corpus callosum phenotypes in a panel of genotypes where Hs2st or Hs6st1 and Slit1 or Slit2 function were simultaneously reduced or absent. We find examples of Hs2st and Hs6st1 having epistatic, synergistic, and antagonistic genetic relationships with Slit1 and/or Slit2 depending on the context. At the corpus callosum we find that Hs6st1 has Slit-independent functions and our data indicate additional roles in FGF signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据