4.7 Article

Dynamic Interaction of Ih and IK-LVA during Trains of Synaptic Potentials in Principal Neurons of the Medial Superior Olive

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 24, 页码 8936-8947

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1079-11.2011

关键词

-

资金

  1. NIH [R01 DC006788, R01 DC008543-01]

向作者/读者索取更多资源

In neurons of the medial superior olive (MSO), voltage-gated ion channels control the submillisecond time resolution of binaural coincidence detection, but little is known about their interplay during trains of synaptic activity that would be experienced during auditory stimuli. Here, using modeling and patch-clamp recordings fromMSOprincipal neurons in gerbil brainstem slices, we examined interactions between two major currents controlling subthreshold synaptic integration: a low-voltage-activated potassium current (IK-LVA) and a hyperpolarization-activated cation current (I-h). Both I-h and IK-LVA contributed strongly to the resting membrane conductance and, during trains of simulated EPSPs, exhibited cumulative deactivation and inactivation, respectively. In current-clamp recordings, regular and irregular trains of simulated EPSCs increased input resistance up to 60%, effects that accumulated and decayed (after train) over hundreds of milliseconds. Surprisingly, the mean voltage and peaks of EPSPs increased by only a few millivolts during trains. Using a model of an MSO cell, we demonstrated that the nearly uniform response during modest depolarizing stimuli relied on changes in I-h and IK-LVA, such that their sum remained nearly constant over time. Experiments and modeling showed that, for simplified binaural stimuli (EPSC pairs in a noisy background), spike probability gradually increased in parallel with the increasing input resistance. Nevertheless, the interplay between I-h and IK-LVA helps to maintain a nearly uniform shape of individual synaptic responses, and we show that the time resolution of synaptic coincidence detection can be maintained during trains if EPSC size gradually decreases (as in synaptic depression), counteracting slow increases in excitability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据