4.7 Article

Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 25, 页码 9390-9403

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0645-11.2011

关键词

-

资金

  1. National Institutes of Health [EY016774, EY015958, EY018894]

向作者/读者索取更多资源

The gamma frequencies of the local field potential (LFP) provide a physiological correlate for numerous perceptual and cognitive phenomena and have been proposed to play a role in cortical function. Understanding the spatial extent of gamma and its relationship to spiking activity is critical for interpreting this signal and elucidating its function, but previous studies have provided widely disparate views of these properties. We addressed these issues by simultaneously recording LFPs and spiking activity using microelectrode arrays implanted in the primary visual cortex of macaque monkeys. We find that the spatial extent of gamma and its relationship to local spiking activity is stimulus dependent. Small gratings, and those masked with noise, induce a broadband increase in spectral power. This signal is tuned similarly to spiking activity and has limited spatial coherence. Large gratings, however, induce a gamma rhythm characterized by a distinctive spectral bump, which is coherent across widely separated sites. This signal is well tuned, but its stimulus preference is similar across millimeters of cortex. The preference of this global gamma rhythm is sensitive to adaptation, in a manner consistent with its magnifying a bias in the neuronal representation of visual stimuli. Gamma thus arises from two sources that reflect different spatial scales of neural ensemble activity. Our results show that there is not a single, fixed ensemble contributing to gamma and that the selectivity of gamma cannot be used to infer its spatial extent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据