4.7 Article

Synchronized Bilateral Synaptic Inputs to Drosophila melanogaster Neuropeptidergic Rest/Arousal Neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 22, 页码 8181-8193

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2017-10.2011

关键词

-

资金

  1. NINDS-NIH [R01NS056443, R01NS055035, R21NS058330, F32NS055527]
  2. National Institute of General Medical Sciences-NIH [F32GM093344.]
  3. National Institute of Mental Health [R25MH059472]

向作者/读者索取更多资源

Neuropeptide PDF (pigment-dispersing factor)-secreting large ventrolateral neurons (lLN(v)s) in the Drosophila brain regulate daily patterns of rest and arousal. These bilateral wake-promoting neurons are light responsive and integrate information from the circadian system, sleep circuits, and light environment. To begin to dissect the synaptic circuitry of the circadian neural network, we performed simultaneous dual whole-cell patch-clamp recordings of pairs of lLN(v)s. Both ipsilateral and contralateral pairs of lLN(v)s exhibit synchronous rhythmic membrane activity with a periodicity of similar to 5-10s. This rhythmiclLN(v) activity is blocked by TTX, voltage-gated sodium blocker, or alpha-bungarotoxin, nicotinic acetylcholine receptor antagonist, indicating that action potential-dependent cholinergic synaptic connections are required for rhythmic lLN(v) activity. Since injecting current into one neuron of the pair had no effect on the membrane activity of the other neuron of the pair, this suggests that the synchrony is attributable to bilateral inputs and not coupling between the pairs of lLN(v)s. To further elucidate the nature of these synaptic inputs to lLN(v)s, we blocked or activated a variety of neurotransmitter receptors and measured effects on network activity and ionic conductances. These measurements indicate the lLN(v)s possess excitatory nicotinic ACh receptors, inhibitory ionotropic GABA(A) receptors, and inhibitory ionotropic GluCl (glutamate-gated chloride) receptors. We demonstrate that cholinergic input, but not GABAergic input, is required for synchronous membrane activity, whereas GABA can modulate firing patterns. We conclude that neuropeptidergic lLN(v)s that control rest and arousal receive synchronous synaptic inputs mediated by ACh.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据