4.7 Article

Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a Clock or Filtered Noise?

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 26, 页码 9658-9664

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0660-11.2011

关键词

-

资金

  1. Swartz Foundation
  2. NIH [T32-EY007158, R01 EY-01472]
  3. National Science Foundation [IOS-745253]

向作者/读者索取更多资源

Gamma-band (25-90 Hz) peaks in local field potential (LFP) power spectra are present throughout the cerebral cortex and have been related to perception, attention, memory, and disorders (e.g., schizophrenia and autism). It has been theorized that gamma oscillations provide a clock for precise temporal encoding and binding of signals about stimulus features across brain regions. For gamma to function as a clock, it must be autocoherent: phase and frequency conserved over a period of time. We computed phase and frequency trajectories of gamma-band bursts, using time-frequency analysis of LFPs recorded in macaque primary visual cortex (V1) during visual stimulation. The data were compared with simulations of random networks and clock signals in noise. Gamma-band bursts in LFP data were statistically indistinguishable from those found in filtered broadband noise. Therefore, V1 LFP data did not contain clock-like gamma-band signals. We consider possible functions for stochastic gamma-band activity, such as a synchronizing pulse signal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据